Herpes simplex virus type-1 induces IFN-alpha production via Toll-like receptor 9-dependent and -independent pathways.
نویسندگان
چکیده
Type I IFN production in response to the DNA virus herpes simplex virus type-1 (HSV-1) is essential in controlling viral replication. We investigated whether plasmacytoid dendritic cells (pDC) were the major tissue source of IFN-alpha, and whether the production of IFN-alpha in response to HSV-1 depended on Toll-like receptor 9 (TLR9). Total spleen cells or bone marrow (BM) cells, or fractions thereof, including highly purified pDC, from WT, TLR9, and MyD88 knockout mice were stimulated with known ligands for TLR9 or active HSV-1. pDC freshly isolated from both spleen and BM were the major source of IFN-alpha in response to oligodeoxynucleotides containing CpG motifs, but in response to HSV-1 the majority of IFN-alpha was produced by other cell types. Moreover, IFN-alpha production by non-pDC was independent of TLR9. The tissue source determined whether pDC responded to HSV-1 in a strictly TLR9-dependent fashion. Freshly isolated BM pDC or pDC derived from culture of BM precursors with FMS-like tyrosine kinase-3 ligand, produced IFN-alpha in the absence of functional TLR9, whereas spleen pDC did not. Heat treatment of HSV-1 abolished maturation and IFN-alpha production from all TLR9-deficient DC but not WT DC. Thus pDC and non-pDC produce IFN-alpha in response to HSV-1 via both TLR9-independent and -dependent pathways.
منابع مشابه
Type I interferon production during herpes simplex virus infection is controlled by cell-type-specific viral recognition through Toll-like receptor 9, the mitochondrial antiviral signaling protein pathway, and novel recognition systems.
Recognition of viruses by germ line-encoded pattern recognition receptors of the innate immune system is essential for rapid production of type I interferon (IFN) and early antiviral defense. We investigated the mechanisms of viral recognition governing production of type I IFN during herpes simplex virus (HSV) infection. We show that early production of IFN in vivo is mediated through Toll-lik...
متن کاملHerpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9.
Natural interferon-producing cells (IPCs) specialize in the production of high levels of type 1 interferons (IFNs) in response to encapsulated DNA and RNA viruses. Here we demonstrate that the secretion of type 1 IFN in response to herpes simplex virus type 1 (HSV-1) in vitro is mediated by the toll-like receptor 9 (TLR9)/MyD88 pathway. Moreover, IPCs produce interleukin-12 (IL-12) in response ...
متن کاملToll-like Receptor 9–mediated Recognition of Herpes Simplex Virus-2 by Plasmacytoid Dendritic Cells
Plasmacytoid dendritic cells (pDCs) have been identified as a potent secretor of the type I interferons (IFNs) in response to CpG as well as several viruses. In this study, we examined the molecular mechanism of virus recognition by pDCs. First, we demonstrated that the CD11c+Gr-1intB220+ pDCs from mouse bone marrow secreted high levels of IFN-alpha in response to either live or UV-inactivated ...
متن کاملModified vaccinia virus Ankara induces Toll-like receptor-independent type I interferon responses.
Modified vaccinia virus Ankara (MVA) is a highly attenuated vaccinia virus strain undergoing clinical evaluation as a replication-deficient vaccine vector against various infections and tumor diseases. To analyze the basis of its high immunogenicity, we investigated the mechanism of how MVA induces type I interferon (IFN) responses. MVA stimulation of bone marrow-derived dendritic cells (DC) sh...
متن کاملInduction of innate immunity against herpes simplex virus type 2 infection via local delivery of Toll-like receptor ligands correlates with beta interferon production.
Toll-like receptors (TLRs) constitute a family of innate receptors that recognize and respond to a wide spectrum of microorganisms, including fungi, bacteria, viruses, and protozoa. Previous studies have demonstrated that ligands for TLR3 and TLR9 induce potent innate antiviral responses against herpes simplex virus type 2 (HSV-2). However, the factor(s) involved in this innate protection is no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 31 شماره
صفحات -
تاریخ انتشار 2004